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We present a switched control algorithm to stabilize a car-like mobile robot which pos-
sesses velocity level nonholonomic constraint. The control approach rests on splitting
the system into several second-order subsystems and then stabilizing the system sequen-
tially using finite-time controllers, finally resulting in the mobile robot being moved from
one point to another point. State dependent switching control is employed in which the
controllers switches on a thin surface in the state-space. Robustness analysis is presented
by redefining the switching signal using relaxed switching surface. Both, non-robust and
robust controllers are validated through numerical simulation.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Control of nonholonomic systems present greater challenges than systems without constraints. A comprehensive litera-
ture survey on nonholonomic systems can be found in [1]. A particular class of these systems are not linearly controllable
around any of its equilibrium points and further it cannot be stabilized by smooth feedback control law [2]. Typical examples
are mobile robot, surface vessel and space robots. However, the existence of nonlinear controllers is guaranteed from non-
linear controllability results. Several control methods have been proposed to stabilize these system using discontinuous con-
trollers based on sliding mode [3,4], hybrid technique [5,6], r process [7,8], and time-varying controllers [9]. Discontinuous
controllers results in the convergence of the closed-loop trajectories while time-varying controllers can guarantee exponen-
tial stability but with low rate of convergence and oscillating trajectories.

Switched control system has recently received much attention due to its applicability to a wide range of control problems
[10]. Many physical systems exhibits switching in nature. Switched systems can be classified into state-dependent and time-
dependent systems. This approach has been applied to nonholonomic systems in [11,6,12]. The stability analysis of the
switched systems using Lyapunov functions has been extensively studied.

In this paper, we consider a point-to-point control problem of a car-like mobile robot with a velocity level nonholonomic
constraint. Discontinuous controllers are proposed for this problem in the literature using various techniques [13,7] and
time-varying controllers are proposed in [9,14]. We propose a state-dependent switched controller to move the mobile robot
from one point to an another in the configuration space. We first split the whole system into several second-order systems to
perform a specific maneuver and then each of these systems are stabilized sequentially by second-order finite-time control-
lers. The switching signal is generated by a state-dependent decision maker, thus a state-dependent switching control. In
. All rights reserved.
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each stage the system reaches a subspace of the whole space, finally moving to the origin. We prove the convergence of the
closed-loop system to the equilibrium point.

The rest of the paper is organised as follows: Section 2 introduces some mathematical preliminaries along with the model
of the mobile robot. Controller design is presented in Section 3 while the stability and robustness are discussed in Section 4.
Simulation results and conclusion are presented in the subsequent sections.

2. Mathematical preliminaries and background

In this section, we briefly discuss the notion of switched systems, finite-time controllers and the dynamic model of the
mobile robot. Consider a nonlinear system of the form
_x ¼ fpðxÞ; x 2 IRn;

xð0Þ ¼ x0;
ð1Þ
where, p 2 P,f1;2;3 . . . ; lg;P being an index set and is finite. Further, let /fp
t denote the flow associated with the vector field

fp with the property that xðtÞ ¼ /fp
t satisfies (1). For the state-dependent switching, the switching signal is a piecewise con-

tinuous map r : IRn ! P. Several subsets are defined in the state-space named as switching surface to define each of the fp’s.
We next briefly present an overview of finite-time controllers.

Finite-time controller are nonlinear controllers which can drive any arbitrary state to the desired state (assumed as the
zero state) in finite-time and stabilize around it. Several finite-time controllers are proposed in the literature in which a first
order finite-time controller is explained here. Consider a first-order control system of the form _x ¼ u, then the following con-
trol laws
u1 ¼ �k1x1=3; k1 > 0

u2 ¼ �k2signðxÞ; k2 > 0
can drive the system trajectory to zero in finite-time [16,18]. Controller u1 is a fractional power controller and its stabil-
ity analysis can be found in [16]. Controller u2 is a special form of the sliding mode controller with x ¼ 0 as the sliding
surface.

Since we split the mobile robot system as composed of several double integrators with each executing specific tasks in
this paper, we concentrate on the finite-time controllers which stabilize double integrator. The following double integrator
_x1 ¼ x2

_x2 ¼ u
is finite-time stable with the following four controllers.
u1 ¼ �signðx1Þjx1ja � signðx2Þjx2jb

u2 ¼ �signðx2Þjx2j1=3 � sign x1 þ
3
5

x5=3
2

� �� �
x1 þ

3
5

x5=3
2

� �����
����
1=5

u3 ¼ �c1signðx2 þ c2jx1j1=2signðx1ÞÞ

u4 ¼ �signðx2Þjx2j1=3 � sign sinðx1 þ
3
5

x5=3
2

� �� �
sinðx1 þ

3
5

x5=3
2

� �����
����

1=5
where, b 2 ð0;1Þ; a > b
2�b ; c1; c2 > 0. The control law u1 is proposed in [16] with finite-time convergence analysis using a

Lyapunov function. Controller u2 is presented in [19], while u3 is called a second-order sliding mode controller as the states
x1 ¼ 0 and x2 ¼ 0 can be viewed as sliding surfaces [17]. Finally, u4 is a special form of u2 which is also proposed in [19] to
especially stabilize the rotational double integrator to avoid the winding phenomenon. In brief, if x1 2 S1, the controller u4 is
useful and finds use in this paper. Controllers u2;u3;u4 have been proved that they are robust with respect to small param-
eter uncertainties. For details, the reader can refer to [15,17].

Next consider a car-like mobile robot as shown in Fig. 1. The kinematic model of the mobile robot can be written as:
_x ¼ v cos h;

_y ¼ v sin h;

_h ¼ x;
where, the triple ðx; y; hÞ denotes the position and the orientation of the vehicle with respect to the inertial frame and v;x are
the linear and angular velocities of the mobile robot. The velocity level nonholonomic constraint imposed on the robot is
given by _x sin h� _y cos h ¼ 0. The dynamic model is obtained using the following relations
M _v ¼ F;

I _x ¼ s;
ð2Þ
where, M is the mass of the vehicle, I is moment-of-inertia, s ¼ L
r ðs1 � s2Þ; F ¼ 1

r ðs1 þ s2Þ, with L being the distance between
the center-of-mass and the wheel, s1; s2 are the left and right wheel motor torques and r is the radius of the rear wheel. The



Fig. 1. Schematic of the mobile robot.
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equations of motion using the state transformation x ¼ ðx1; x2; x3; x4; x5Þ,ðh; x cos hþ y sin h; x sin h� y cos h;x; vÞ can be ex-
pressed as a standard form of nonlinear affine control system as follows
_x ¼ f ðxÞ þ g1ðxÞsþ g2ðxÞF

f ðxÞ ¼

x4

x5 � x4x3

x4x2

0
0

0
BBBBBB@

1
CCCCCCA

; g1ðxÞ ¼

0
0
0
k1

0

0
BBBBBB@

1
CCCCCCA

; g2ðxÞ ¼

0
0
0
0
k2

0
BBBBBB@

1
CCCCCCA

ð3Þ
where f ; g1; g2 are smooth vector fields defined on the smooth manifold M1 ¼ S1 � IR4, with, k1,
1
I > 0; k2,

1
M > 0.

3. Controller design

The control objective is to move the mobile robot from any initial position with initial velocity ðxð0Þ; yð0Þ; hð0Þ; vð0Þ;xð0ÞÞ
to desired position with zero velocity ðxd; yd; hd;0;0Þ. This, without loss of generality, can be considered as the stabilization of
(3) to zero. From the physical point of view, moving the vehicle form one point to another point can be done as follows.

1. Stop the robot.
2. Home towards the target.
3. Move to the target.
4. Rotate to the desired orientation.

This control strategy is realized by splitting the whole system into several second order system to execute each tasks. The
individual tasks can be considered as the following control problem.

3.1. Stage 1: Stopping the robot

Without loss of generality, we assume that the robot starts with non-zero initial velocity. Then, the first objective is to
stop the vehicle, that is, to move the system from D1,M1 to D2,fx 2M : x4 ¼ x5 ¼ 0g. To achieve this, consider the equa-
tions related to x4; x5 dynamics
_x4 ¼ k1s
_x5 ¼ k2F
and the following control law
s ¼ �K1signðx4Þjx4j1=3
;

F ¼ �K2signðx5Þjx4j1=3
;



2322 V. Sankaranarayanan, A.D. Mahindrakar / Commun Nonlinear Sci Numer Simulat 14 (2009) 2319–2327
where, K1;K2 > 0 are free. The closed-loop system at this stage becomes
_x1 ¼ x4;

_x2 ¼ x5 � x4x3;

_x3 ¼ x4x2;

_x4 ¼ �k1K1signðx4Þjx4j1=3
;

_x5 ¼ �k2K2signðx5Þjx5j1=3
:

ð4Þ
Then there exist a finite time T1 P 0 such that x4 ¼ x5 ¼ 0, and hence the closed-loop trajectories reach the manifold
D2,fx : x4 ¼ x5 ¼ 0g for t P T1. At the end of this stage the robot is brought to a halt in finite-time.

3.2. Stage 2: home towards the target

In this stage, the control objective is to rotate the robot using the torque s to home towards the target point ðxd; ydÞ. From
(3), this can be considered as the regulation of the state x3 to zero. To achieve this objective, we consider the following
transformation
x3 ¼ x sin h� y cos h
from which it is easy to compute the desired ht to render the state x3 ¼ 0. In other words
0 ¼ x sin ht � y cos ht
can be achieved if ht ¼ tan�1 y
x

� �
. Thus, in this stage, the regulation to the target direction ht is achieved using the following

state equation
ht � x1 ¼ x4;

x4 ¼ k1s:
Applying the same control action as designed in the first stage to prevent the forward motion of the vehicle, hence ht is a
constant. For the torque s, consider the following control law
s ¼ �signðx4Þjx4j1=3 þ sign sinðx1t þ
3
5

x5=3
4

� �� �
sinðx1t þ

3
5

x5=3
4

� �����
����

1=5

;

where, x1t ¼ ht � x1. The above control action regulates the state x1 to x1t in some finite-time, hence x3 ¼ 0 in some finite
time T2 > 0. In this stage the closed-loop system becomes
_x1 ¼ x4;

_x2 ¼ x5 � x4x3;

_x3 ¼ x4x2;

_x4 ¼ k1 �signðx4Þjx4j1=3 þ sign sinðx1t þ
3
5

x5=3
4

� �� �
sinðx1t þ

3
5

x5=3
4

� �����
����
1=5

" #
;

_x5 ¼ �k2K2signðx5Þjx5j1=3
:

ð5Þ
Thus, for t P T1 þ T2, the trajectories reach the set D3 ¼ fx : x3 ¼ x4 ¼ x5 ¼ 0g.

3.3. Stage 3: move to the target

In this state the robot is performing pure forward motion to reach the target point. This can be considered as regulating
the state x2 to zero in (3). Consider the dynamics of x2
_x2 ¼ x5

_x5 ¼ k2F
and note that this dynamics is valid only if x3 ¼ x4 ¼ 0 for the entire maneuver. Also, note that at the end of each state the
robot is brought to a halt, that is, x3 ¼ x4 ¼ 0. It is necessary to regulate one of the velocities to zero for all stages beyond the
first one. Therefore, in this stage, the torque control is designed to maintain the velocity x4 ¼ 0 which results in x3 ¼ 0 and
further helps to steer the robot in the forward direction. The force control for the forward motion can be designed as
F ¼ �signðx5Þjx5j1=3 � sign x2 þ
3
5

x5=3
5

� �� �
x2 þ

3
5

x5=3
5

� �����
����
1=5

:

This force control drives the state x2 ¼ 0 in some finite time T3 > 0. The closed-loop system can be written as:
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_x1 ¼ x4

_x2 ¼ x5 � x4x3

_x3 ¼ x4x2

_x4 ¼ �k1K1signðx4Þjx4j1=3

_x5 ¼ k2 �signðx5Þjx5j1=3 � sign x2 þ
3
5

x5=3
5

� �� �
x2 þ

3
5

x5=3
5

� �����
����

1=5
" #

ð6Þ
and for t P T3 þ T2 þ T1, the closed-loop trajectories reach the set D4 ¼ fx : x2 ¼ x3 ¼ x4 ¼ x5 ¼ 0g.

3.4. State 4: rotate to the desired orientation

At the end of the third stage, the robot is at the desired position but not with the desired orientation. The desired orien-
tation is performed using the torque control and this can be considered as the regulation of the state x1 ¼ 0 in finite time.
Consider the dynamics of x1
_x1 ¼ x4;

_x4 ¼ k1s;
with the following control law
s ¼ �signðx4Þjx4j1=3 � sign sinðx1 þ
3
5

x5=3
4

� �� �
sinðx1 þ

3
5

x5=3
4

� �����
����
1=5

:

The closed-loop system is given by
_x1 ¼ x4

_x2 ¼ x5 � x4x3

_x3 ¼ x4x2

_x4 ¼ k1 �signðx4Þjx4j1=3 � sign sinðx1 þ
3
5

x5=3
4

� �� �
sinðx1 þ

3
5

x5=3
4

� �����
����

1=5
" #

_x5 ¼ �k2K2signðx5Þjx5j1=3

ð7Þ
and the closed-loop trajectories reach the origin in some finite time T4 > 0. At the end of fourth stage, the system is steered
to the origin. Each control action can be summarized as a state-dependent switching control as follows.

With the following definitions u,½sF�>;P,f1;2;3;4g, the closed-loop switched system can be expressed as _x ¼ f ðx;urÞ
where the switching signal r : M! P, takes on the values based on the state-dependent switching criteria r ¼ i if
x 2 Di. The control strategy can now be summarized as
u1 ¼
�K1signðx4Þjx4j1=3

�K2signðx5Þjx5j1=3

" #

u2 ¼
�signðx4Þjx4j1=3 � sign ðsin x1t þ 3

5 x5=3
4

	 
h i
sinðx1t þ 3

5 x5=3
4

	 
��� ���1=5

�K2signðx5Þjx5j1=3

2
4

3
5

u3 ¼
�K1signðx4Þjx4j1=3

�signðx5Þjx5j1=3 � sign x2 þ 3
5 x5=3

5

	 
h i
x2 þ 3

5 x5=3
5

	 
��� ���1=5

2
4

3
5

u4 ¼
�signðx4Þjx4j1=3 � sign ðsin x1 � 3

5 x5=3
4

	 
h i
ðsin x1 þ 3

5 x5=3
4

	 
��� ���1=5

�K2signðx5Þjx5j1=3

2
4

3
5:
Using the notion of flow, the control switching can be expressed as:
/T4
fþg1s

� /T3
fþg2F � /T2

fþg1s
� /T1

fþg1sþg2FðxÞ ¼ 0; x 2M; ð8Þ
where s; F take on appropriate expressions based on the switching manifolds Di; i ¼ 1; . . . ;4.

Remark 1. The switching function r maps elements of M to the set P. Further, if the flows in (8) can be analytically found,
then the state-dependent switching is equivalent to a time-dependent switching for a suitably defined time-dependent
switching signal r̂ : ½0;1Þ ! P.
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4. Stability and robustness analysis

In this section we present the stability analysis of the proposed switched control algorithms. Consider the Lyapunov can-
didate function
VðxÞ ¼ 1
2
ðx2

1 þ x2
2 þ x2

3 þ x2
4 þ x2

5Þ
and further define
ViðxÞ ¼ fVðxÞ : x 2 Dig:
Fig. 2. Lyapunov function.
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Fig. 3. States and control inputs – thin switching surface.
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Fig. 5. Thin switching surfaces.
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It is easy to note that the following holds
V4ðxÞ < V3ðxÞ < V2ðxÞ < V1ðxÞ
V4ðxÞ < V3ðxÞ < V2ðxÞ < V0ðxÞ
and further the time histories of Vi’s can be depicted as shown as in Fig. 2 from which it is easy to conclude that for every
V0ðxÞ, there exists constants Kx0 ; kx0 > 0 depending on the initial condition xð0Þ ¼ x0 such that
VðxÞ 6 Kx0 Vðxð0ÞÞe�kx0 t :
Since the constants Kx0 ; kx0 depend on the initial condition, we can infer, at the most, the convergence of the closed-loop tra-
jectories to the equilibrium, and not in the sense of conventional stability. We next present some robustness analysis to val-
idate the proposed switched control algorithm. It has been shown that the switched control methods are robust with
parametric uncertainty in [11].

In the proposed approach, we have defined thin switching surfaces in which the controller switches from one to another.
The thin switching surface is the conventional switching surface used in the sliding-mode terminology. It is not practically
feasible to switch on the thin surface. Moreover, with various uncertainties it is not feasible to reach such thin surfaces. To
mitigate this problem and from the point of view of the controller implementation, we redefine the switching surface,
termed relaxed switching surface as follows:
D1r ¼M;

D2r,fx : jx4j; jx5j 6 �g;
D3r,fx : jx3j; jx4j; jx5j 6 �g;
D4r,fx : jx2j; jx3j; jx4j; jx5j 6 �g; � > 0:
The relaxed switching surfaces can be viewed as strips around the thin sets Di; i ¼ 1; . . . ;4. The relaxed switching surface
retains the positive invariance property even in the presence of uncertainties and small disturbances unlike the thin sets.
However, the use of relaxed switching surface guarantees only practical stability.

The switching signal is now redefined as r ¼ i if x 2 Dir . We next present simulation results of the closed-loop system
based on the thin as well as the relaxed switching surfaces.
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Fig. 6. States and control inputs – relaxed switching surface.
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5. Simulation results

We simulate the proposed controller for the initial condition hð0Þ ¼ �1 rad, xð0Þ ¼ �3 m, yð0Þ ¼ �13:8 m, xð0Þ ¼ 1 rad=s,
vð0Þ ¼ �3 m=s. The time response using the switching regions Di is shown in Fig. 3. The robot path is shown in Fig. 4 and the
switching surface is depicted in Fig. 5. The time-response of the control strategy with the relaxed switching surface, using
� ¼ 0:01 is shown in Fig. 6.

6. Conclusions

We have presented a switched control strategy to steer a mobile robot from one point to another. The physical task of
stop, home, move and re-orient is mathematically related in terms of different operating regions, thereby rendering the con-
trol strategy amiable for state-dependent switched control. To obviate the drawback of thin switching surfaces, we have
introduced relaxed switching surface and demonstrated the effectiveness of the controller using simulations.
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